Finden Sie schnell wärmepumpe funktionsprinzip für Ihr Unternehmen: 30 Ergebnisse

Brauchwasser Wärmepumpe EHT REVOLUTION

Brauchwasser Wärmepumpe EHT REVOLUTION

Langlebige Brauchwasser-Wärmepumpe. Drehbare Abluft- bzw. Ansaugkanäle können warme Luft ansaugen und kalte Luft ableiten, wo immer dies von Vorteil ist. COP-Wert Inhalt 270 l Höhe 1957 mm Breite | Durchmesser 665 mm Tiefe 665 mm Mindestraumhöhe 2160 mm Auswähle
So funktioniert das Prinzip Wärmepumpe

So funktioniert das Prinzip Wärmepumpe

Die Wärmepumpe entzieht dem Grundwasser, dem Erdreich oder der Außenluft die enthaltene Wärme und gibt die entzogene Wärme zuzüglich der Antriebsenergie an den Heizkreis oder das Warmwasser ab. Wirtschaftlichkeit der Wärmepumpen-Anlage ist abhängig von der Temperaturdifferenz zwischen der Wärmequellentemperatur und der benötigten Vorlauftemperatur der Heizung. Grundsätzlich gilt: Je geringer diese Temperaturdifferenz, umso wirtschaftlicher arbeitet die Wärmepumpen-Anlage. In Kombination mit einer richtig dimensionierten Fußbodenheizung lässt sich so eine sehr energiesparende Anlage betreiben. Eine optimale Planung der Gesamtanlage ist daher entscheidend.
Wärmepumpen/Wärmerückgewinnung

Wärmepumpen/Wärmerückgewinnung

Eine Wärmepumpe ist eine Maschine, die unter Aufwendung von technischer Arbeit thermische Energie aus einem Reservoir mit niedrigerer Temperatur (in der Regel ist das die Umgebung) aufnimmt und – zusammen mit der Antriebsenergie – als Nutzwärme auf ein zu beheizendes System mit höherer Temperatur (Raumheizung) überträgt. Der hierzu genutzte Prozess entspricht im Prinzip der Umkehrung eines Wärme-Kraft-Prozesses, bei dem Wärmeenergie mit hoher Temperatur aufgenommen und teilweise in mechanische Nutzarbeit umgewandelt und die Restenergie bei niedrigerer Temperatur als Abwärme abgeführt wird. Das Prinzip der Wärmepumpe wird auch zum Kühlen genutzt (so beim Kühlschrank), während der Begriff „Wärmepumpe“ nur für das Heizaggregat verwendet wird. Beim Kühlprozess ist die Nutzenergie die aus dem zu kühlenden Raum aufgenommene Wärme, die zusammen mit der Antriebsenergie als Abwärme an die Umgebung abgeführt wird. Beispiel: Kühlschrank – Durch den Kühlprozess wird automatisch Abwärme erzeugt. Diese Abwärme wird genutzt, um z. B. das Brauchwasser oder das Heizungswasser zu erwärmen. Diese Methode wird jedoch grundsätzlich nur bei Anlagen mit größerer Leistung, wie etwa Kühlhäusern oder Verbundanlagen mit mehreren Kühlstellen, angewandt.
Hochleistungswärmepumpe - Magma

Hochleistungswärmepumpe - Magma

Die thermodynamischen Prozesse, auf denen die Chiller-Technologie beruht, haben zur Folge, dass dort wo Kälte erzeugt wird, auch immer Wärme entsteht. Diesen Zusammenhang macht KKT chillers sich zu Nutze und bildet mit der Geräteserie MAGMA eine kompakte Hochleistungswärmepumpen im Leistungsbereich von 200 – 1.000 kW ab. Die Priorität liegt hier bei der Verwendung der entstandenen Wärme. Durch den Einsatz von Hochleistungswärmepumpen kann die Energie-Effizienz um bis zu 50% gesteigert werden. Als Anwendung sind all diejenigen Prozesse geeignet, bei denen gleichzeitig geheizt oder gekühlt werden muss. Dabei wird dem Kühlbereich Energie entzogen und dem Heizbereich der Maschine mit dem entsprechenden Temperaturniveau wieder zugeführt - die Energie verbleibt also im System. Da für die gleichzeitige Erzeugung von Kälte und Wärme mittels Hochleistungswärmepumpen nur noch ein Aggregat benötigt wird, können die Invest-, Betriebs- und Instandhaltungskosten für zusätzliche Aggregate wie beispielsweise eine Öl- oder Gasbefeuerung eingespart werden. Der Verbrauch von Rohstoffen wie Gas, Öl aber auch von Kühlwasser kann deutlich reduziert oder gar komplett eingespart werden. Der Einsatz von Hochleistungswärmepumpen entlastet nicht nur die Umwelt, sondern ist förderungsfähig und spart nach einer Amortisationszeit von weniger als einem Jahr bares Geld. Um die bestmögliche Effizienz für den jeweiligen Anwendungsfall zu erreichen, kommen beispielsweise je nach Temperaturbereich und Speichermöglichkeit die unterschiedlichsten Verdichter-Technologien zum Einsatz. Auch die Art der Wärmeübertragung wird in Abhängigkeit der Wärmeträger-Spezifikation von Projekt zu Projekt neu ausgewählt. Selbst das Verrohrungsmaterial und die Gehäuse-Konstruktion sind auf den Bedarfsfall optimal zugeschnitten. Die auf die Gebäudeleittechnik kundenspezifisch abgestimmte Regelungstechnik rundet das Erfolgskonzept aus Kälte und Wärme ab. Nano Line Kälteleistung 1,7 - 6,5 kW
Nutzbare Energiequellen für Wärmepumpen

Nutzbare Energiequellen für Wärmepumpen

Diese Energiequellen können von Wärmepumpen genutzt werden. Moderne Wärmepumpensysteme nutzen die Energie aus der Luft und dem Erdreich. Luftbetriebene Wärmepumpen sind effizient und erfordern geringe Investitionen. Sie wandeln die Energie aus der Luft in Heizwärme für das Haus um. Weitere Energiequellen sind das Erdreich, das Grundwasser und Sonde. Allerdings haben diese Alternativen höhere Investitionskosten.
Luft/Wasser-Wärmepumpen sind am beliebtesten

Luft/Wasser-Wärmepumpen sind am beliebtesten

Mit einem Marktanteil von etwa 80 % sind Luft/Wasser-Wärmepumpen am beliebtesten. Dies ist vor allem darauf zurückzuführen, dass sich die Wärmequelle Luft relativ einfach und kostengünstig erschließen lässt. Die Aufstellung der Geräte erfolgt entweder komplett im Keller oder Erdgeschoss sowie platzsparend im Freien; man spricht dann von Monoblock-Wärmepumpen. Alternativ gibt es die Splitbauweise, bei der die Wärmepumpe in ein Außen- und ein Innenmodul aufgeteilt ist. Vor allem in dicht besiedelten Wohngebieten ist bei der Standortwahl darauf zu achten, dass im Freien aufgestellte Wärmepumpen(teile) keine störenden Schallemissionen verursachen.
Wärmepumpen München : alle Leistungen aus einer Hand!

Wärmepumpen München : alle Leistungen aus einer Hand!

Unsere Spezialisten für Wärmepumpen von VKG-Haustechnik kümmern sich im Raum München gerne um den Einbau, Installation, Wartung und Reparatur Ihrer Wärmepumpenanlage. Für Verbraucherinnen und Verbraucher wird Heizen mit Heizöl und Erdgas immer teurer. Gegen steigende Heizkosten können Mieter und Hausbesitzer oft nur wenig unternehmen aber Wärmepumpen sind höchst effizient, nahezu wartungsfrei und machen unabhängig von Preisschwankungen bei Gas oder Heizöl. Die Wärmepumpen-Technologie nutzt Wärme-Energie aus der Natur – aus der Luft, dem Grundwasser oder der Erde – und komprimiert sie zu Wohnraumwärme und Warmwasser. In klimafreundliche und hocheffiziente Heizlösungen zu investieren lohnt sich seit Verabschiedung des Klimaschutzgesetzes noch mehr. Dazu gehören auch Wärmepumpen, deren Einbau staatlich gefördert wird. Dabei profitieren Sie in mehrfacher Hinsicht: Sie erhalten Förderungen von bis zu 45 Prozent. Unerschöpflicher Energievorrat Der Einbau einer Wärmepumpe wird durch deutlich geringere Heizkosten belohnt. Die Energieeffizienz wird um bis zu 30 Prozent gesteigert. Die CO2-Emissionen werden deutlich reduziert ( bis zu 90%) Praktisch wartungsfreier Betrieb die Wärmepumpe kann auch dazu genutzt werden, die Temperatur im Haus herunter zu kühlen Wärmepumpen und Solaranlagen (Photovoltaik) Möchten Sie Ihre Heizkosten noch weiter verringern, lohnt sich bei Wärmepumpen die Kombination mit einer Photovoltaikanlage. Diese erzeugt aus der kostenlosen Sonnenenergie Strom, welcher wiederum von der Wärmepumpe zur Beheizung des Gebäudes und zur Warmwasserbereitung verbraucht werden kann. Das spart Geld und schont nebenbei auch zusätzlich die Umwelt. Auch solche innovativen Lösungen können wir für Sie umsetzen! Durch eine eigene Elektrotechnik Abteilung im Unternehmen verfügen wir über das notwendige Fachwissen und die Erfahrung wenn es um elektrische Systeme geht.
Neue Direktkondensations-Wärmepumpen mit mehr Power

Neue Direktkondensations-Wärmepumpen mit mehr Power

Direktkondensations-Wärmepumpen von AWE für Neubau und Sanierung. Kompakt Wärmepumpe mit hoher Effizienz. - geringe Übertragungsverluste - schnelle Nachheizung - keine Ladepumpe nötig - hoher Brauchwasser-Komfort - Hergestellt in Bayern WÄRMEPUMPEN-FFB.de Nutzen Sie die Vorteile von F+S Wärmepumpen Finden Sie mit uns die richtige Wärmepumpe Sparen Sie Heizkosten Entlasten Sie die Umwelt und Ihr Einkommen Investieren Sie in eine Wärmepumpe Modernisieren Sie ihre Heizung Profitieren Sie von 25% bis 40% Förderung Nutzen Sie unser Langjährigen Erfahrungen Brauchwasser-Wärmepumpen im Trend Brauchwasser-Wärmepumpen für Altbau und Neubau. Sparsam und nützlich zugleich. - Kellerentfeuchtung - Eigenstromnutzung - Nutzt die Raumluft - Völlig autark Ihre Gebäudedaten
Die Wärmepumpen Orca überschreiten in ihrer Qualität maßgeblich die hohen europäischen Standards.

Die Wärmepumpen Orca überschreiten in ihrer Qualität maßgeblich die hohen europäischen Standards.

Ich empfehle jedem, der sich zu einem Wechsel des Heizungssystems entscheidet, eine Wärmepumpe Orca. Jeden überzeugen die Daten über die Heizkosten, die jetzt nur 1.700 € pro Jahr betragen. Das heißt 2.800 € weniger als vor der Renovierung. Josef Leopold aus Eggersdorf bei Graz Besitzer der Wärmepumpe Orca 300 Duo Exclusive
Pumpenkette

Pumpenkette

McBULL® - Die Profimarke beim Heben und Zurren McBULL® Pumpenkette, Güteklasse 6 (Inox-Edelstahl), 4 mm, Grundpreis 1 Meter Nutzlänge (L1), Tragfähigkeit 400 kg - ACHTUNG: Dies ist der Artikel für eine Nutzlänge von 1 Meter. Bei Bedarf von einer anderen Nutzlänge muss der Artikel -PK4GK6INOX...L2- je weiteren Meter dazubestellt werden. TECHNISCHE DATEN TOP FEATURES Gewicht: 0,35 kg Güteklasse: 6 Kettenstärke: 4x12 mm Maße Aufhängeglied: 6x60x35 mm Maße Übergangsglied: ohne mm Material: INOX-Edelstahl Nutzlänge: 1 m Tragfähigkeit: 400 kg
Energieausweis

Energieausweis

Mit IngSoft InterWatt können Sie einen Energieausweis nach GEG 2020 (Deutschland) und SIA 2031 (Schweiz) erstellen. Diese Software-Funktionalität ist am Markt bislang einzigartig.
Seminar mit Praktikum: Wärmefluss-Thermographie für die industrielle Qualitätssicherung

Seminar mit Praktikum: Wärmefluss-Thermographie für die industrielle Qualitätssicherung

Nächster Termin: 2025 - Die Teilnehmer erhalten einen umfassenden Einblick in die Wärmefluss-Thermographie und lernen die Möglichkeiten der zerstörungsfreien Inspektionstechnik kennen. Nächster Termin: 2025 Die Inspektionstechnik der Wärmefluss-Thermographie gewinnt als zerstörungsfreies Prüfverfahren für die Qualitätssicherung in der Produktion zunehmend an Bedeutung. Mit thermographischen Methoden können unterhalb der Oberfläche liegende und daher äußerlich nicht sichtbare Fehlstellen in Werkstücken erkannt werden, indem der Wärmefluss bzw. die Wärmeleitfähigkeit in den Prüflingen analysiert wird. Grundsätzliche Vorteile der thermographischen Wärmefluss-Prüfverfahren sind das bildgebende Funktionsprinzip, die hohe Prüfgeschwindigkeit und die relativ einfache Automatisierbarkeit. Die Teilnehmer des Online-Seminars erhalten einen umfassenden Einblick in die Wärmefluss-Thermographie und lernen die Möglichkeiten und Grenzen der zerstörungsfreien Prüfung mit Thermographie kennen, um hieraus Leitlinien für die eigene Investitionsplanung ableiten zu können.
Induktive Sensoren - Messprinzip und Aufbau

Induktive Sensoren - Messprinzip und Aufbau

Was sind induktive Sensoren? Kurz gefasst: Induktive Sensoren basieren auf elektromagnetischen Prinzipien, um die Anwesenheit von Metallobjekten zu erkennen. Sie bestehen aus einem Schwingkreis, der eine Hochfrequenz erzeugt. Wenn ein metallisches Objekt in die Nähe des Schwingkreises gebracht wird, wird die Schwingungsfrequenz gestört und der Sensor erkennt das Objekt. Berührungslose induktive Sensoren erzeugen um ihre Sensorfläche ein hochfrequentes elektromagnetisches Feld. Dieses Feld wird von metallischen Objekten beeinflusst und zwar in Abhängigkeit von der Objektgröße, dem Material und dem Abstand zum induktiven Distanzsensor. Der Sensor erfasst diese Änderung und wandelt sie in ein proportionales Ausgangssignal um. Diese Messung findet berührungslos und somit verschleißfrei statt. Im inneren eines induktiven Sensors erzeugt ein Oszillator ein elektromagnetisches Wechselfeld mit Hilfe eines Schwingkreises. Dieses Feld tritt an der aktiven Fläche des Sensors aus. Wenn sich ein metallisches Objekt der aktiven Fläche nähert, entziehen die, in dem Objekt induzierten, Wirbelströme dem Oszillator Energie. Hierdurch entsteht am Oszillatorausgang eine Pegeländerung, die in Abhängigkeit von der Distanz des Objektes das Ausgangssignal beeinflusst und eine induktive lineare Messung ermöglicht. Aufbau von Induktiven Sensoren Was sind die Eigenschaften von induktiven Sensoren? Induktive Sensoren verfügen über eine Reihe von Eigenschaften, die sie für verschiedene Anwendungen geeignet machen. Einige dieser Eigenschaften sind: Empfindlichkeit: Induktive Sensoren können sehr empfindlich sein und sogar kleine Metallteile erkennen.
Enteisenung und  Entmanganung

Enteisenung und Entmanganung

Die Entsäuerung von Rohwässern erfolgt über die physikalische Entsäuerung. Die aufbereitete Prozessluft wird durch einen Verdichter mit dem erforderlichen Betriebsdruck zum Flachbettbelüfter gefördert. Durch den Lufteintrag wird das überschüssigen Kohlendioxid ausgeblasen und über eine Abluftleitung aus dem Gebäude transportiert. Prozessluftverdichtung: der Oximaster © zur energetisch effizienten Erzeugung der Oxidationsluft für Anlagen zur Enteisenung und Entmanganung. Der Oximaster© ist sowohl für Neubauanlagen als auch für bestehende Anlagen gedacht. Bei einem Betrieb mit variablen Volumenströmen steht eine autarke Regel- und Steuereinheit, die OxiControl©, zur Verfügung. (weiter lesen) Der Ferrox © Der Ferrox wurde von uns speziell zur Oxidation von Eisen mittels Lufteintrag entwickelt. Er ist eine kostengünstige und energieeffiziente Alternative für die herkömmliche Aufbereitungsweise mittels Oxidator. Abluft Die Abluft aus dem Sandfilter wird zunächst in das Schlammwasserbeobachtungsbecken (SSWB) geleitet. Das SSWB wird in Edelstahl in gasdichter Ausführung gefertigt. Von dort aus gelangt die Abluft durch eine Fliegen- und Insektenschutzvorrichtung, die entweder über ein Rundrohr mit Kleintiergitter oder über eine Wetterschutzjalousie ins Freie führt.
Tauchmoterpumpe JP-852.2-5  für Schmutzwasser aus Edelstahl

Tauchmoterpumpe JP-852.2-5 für Schmutzwasser aus Edelstahl

FÖRDERLEISTUNG BIS ZU 21,6 M³/H FÖRDERHÖHE BIS ZU 19 M VORTEILE Medienberührende Teile aus Edelstahl. Festkörpergröße bis Ø 10 mm. Laufrad aus Edelstahl. Doppelte Gleitringdichtung in Ölvorlage. Pumpenseitige Gleitringdichtung mit Laufflächen aus Siliziumkarbid für lange Standzeiten auch bei abrasiven Stoffen im Fördermedium. Dauerbetriebsfest auch im teilüberspülten Zustand. EINSATZGEBIETE Entsorgung von Schmutzwasser. Trockenlegung von Kellern Garagen und Gewerbeobjekten. Entleerung von Pumpenschächten und Behältern für Sickerwasser und Regenwasser. Entsorgung von Grauwasser aus Waschmaschinen, Spülmaschinen. Anlagen-/ Apparatebau, industrielle Anwendung.
Verfahrenstechnik

Verfahrenstechnik

Demister und Koaleszenzabscheider für die Umwelt Umweltschutz ist heute eine Selbstverständlichkeit. DHD Filterelemente helfen bei der Reinhaltung von Luft und Wasser. Sie werden zur Reinigung von Industrieabgasen und Abwässern genutzt. Vorteile von DHD-Tropfenabscheidern Strömungsgeschwindigkeit 1-6 m/s Tropfengröße 3 ? 20m Niedriger Druckverlust 1 ? 5 mbar Abscheidegrade bis 99,9 % Problemlose Reinigung Vielfältige Materialauswahl Lange Standzeiten
Membranen für Druckausgleichs­­elemente (DAE)

Membranen für Druckausgleichs­­elemente (DAE)

Effiziente Be- und Entlüftung von Fahrzeugkomponenten Eine zuverlässige Funktion über einen langen Lebenszyklus ist das, was man sich von jedem Bauteil, unabhängig von dessen Einsatzgebiet, wünscht. Dem entgegen steht eine Vielzahl von Faktoren wie z.B. Verschmutzungen, Leckagen, defekte Komponenten oder die Veränderung des Innendrucks. Durch Temperaturschwankungen oder Höhenunterschiede hervorgerufene Druckveränderungen im Gehäuse können zur Verformung dessen führen oder die Dichtungen beschädigen und Undichtigkeiten bedingen. Unsere Membranen für Druckausgleichselemente bestehen aus expandiertem PTFE (Polytetrafluorethylen), dass durch seine einzigartige offenporige Struktur für den nötigen Druckausgleich der Gehäuse sorgt und zugleich das Eindringen von Schmutz, Staub, Wasser und Flüssigkeiten verhindert. So können Sie eine einwandfreie Funktion ihrer Bauteile über einen langen Lebenszyklus sicherstellen. Unser Know How Als Membranhersteller begleiten wir Sie bereits im Entwicklungsstadium Ihres Druckausgleichselementes. Sei es bei der Wahl der passenden Membrane in Bezug auf Luftdurchlässigkeit, Wassereintrittsdruck oder Trägermaterial bis hin zur Berechnung der für einen konstanten Druckausgleich benötigten Membranfläche. Gemeinsam finden wir die richtige Lösung für Ihren speziellen Anwendungsfall. Vorteile von e-PTFE-Membranen für DAEs • Ermöglichen Druckausgleich • Barrierefunktion gegenüber Umwelteinflüssen • Chemisch Inert • Hohe Luftdurchlässigkeit • Hoher Wassereintrittsdruck • Hydrophob • Oleophob ausrüstbar Beispielanwendung: Temperaturwechsel in Elektronikbauteilen Ein konkreter Anwendungsfall für eine erforderliche Be- und Entlüftung im Automobilbau, stellt die Erwärmung von Elektronikkomponenten während des Fahrzeugbetriebs dar. So zeigt nebenstehendes Diagramm beispielhaft einen Temperaturwechsel von -40 °C auf + 80 °C und den im Gehäuse entstehenden Druckanstieg bzw. Druckverlauf. Durch den Einsatz eines Druckausgleichselementes mit der erforderlichen Luftdurchlässigkeit und Membranfläche, wird ein für das Bauteil unkritischer Druckanstieg und anschließender, vollständiger Druckausgleich erreicht. Das Gehäuse nimmt durch den Temperaturanstieg keinen Schaden und ist zudem vor schädlichen Umwelteinflüssen geschützt. Sie haben Fragen zu unseren Membranen für Druckausgleichselemente, einen konkreten Anwendungsfall oder benötigen technische Unterstützung? Melden Sie sich bei uns.
Oberflächenrauhigkeitsmessung

Oberflächenrauhigkeitsmessung

Durchführung der Prüfung und Erstellung von Berichten nach Kundenanforderungen
Der Puffercontrol ist eine Temperaturanzeige für Pufferspeicher.

Der Puffercontrol ist eine Temperaturanzeige für Pufferspeicher.

Diese wurde entwickelt, um den Besitzern aller Arten von Holzheizungen, den Komfort zu bieten, den Energieinhalt ihres Pufferspeichers vom Wohnzimmer aus abzulesen. Dabei werden mehrere Fühler am Pufferspeicher platziert und an ein Sensormodul angeschlossen. Dieses überträgt die Temperaturen durch Kabelverbindung zum Anzeigemodul. Es sind verschiedene Anzeigearten möglich. Unter anderem auch die Anzeige der Temperaturen in 2 Pufferspeicher oder der gleichzeitigen Anzeige eines Puffers und des Holzkessels. In einer Weiterentwicklung wurden noch zwei potentialfreie Ausgangsrelais eingebaut. Mit diesen ist es möglich, über die Differenz-Regler-Funktion, Pumpen zu steuern oder Ventile zu schalten. Diese Weiterentwicklung läuft unter dem Namen „Puffercontrol plus”.
Lösung: Neue Polymere

Lösung: Neue Polymere

Entwicklung neuer Kohlenwasserstoff-Membranen, die ohne Fluor-haltige Komponenten auskommen und eine signifikant verbesserte Leitfähigkeit bei geringer Quellung und damit eine deutlich bessere Mechanik zeigen.
Sichere, langzeitstabile Messung

Sichere, langzeitstabile Messung

Driftfreie Mittelwertsmessungen, kinetische Messungen, Monitoring, Überwachung etc. (durch in-Process-Justierung, Differenzwägetecnik).
FEM-Berechnung und Strukturoptimierung

FEM-Berechnung und Strukturoptimierung

Basierend auf den Ergebnissen der FEM-Berechnung (FE-Simulation) sind wir in der Lage, Ihre Bauteile mit verschiedenen Methoden der Strukturoptimierung zu optimieren. Nahezu alle Bauteile technischer Strukturen lassen sich mit den Werkzeugen der Strukturoptimierung wirkungsvoll verbessern. Die FEMopt Studios GmbH bietet ihren Kunden eine spezifische Bauteiloptimierung an, bei der die Kundenanforderungen gezielt berücksichtigt werden können. Unsere Leistungen unterstützen unsere Kunden in vielfältiger Art und Weise: - Die Optimierungsergebnisse dienen unseren Kunden als Entscheidungshilfe für eine optimale Bauteilauslegung. Mit diesen Ergebnissen begleiten wir die Entwicklungsprozesse unserer Kunden von der frühen Entwurfsphase bis zum endgültigen Produkt. - Durch die Berücksichtigung der Optimierungsergebnisse im Entwurfsprozess werden die Potentiale der Bauteile optimal ausgeschöpft, ungewollte Redundanzen vermieden und der Entwurfsprozess beschleunigt. - Durch die fast vollständig automatisierten Verfahren können Varianten in sehr effizienter Art und Weise untersucht werden. Das ermöglicht ein fundiertes Verständnis für das spezielle Bauteil unter den gegebenen Anforderungen und sichert Entwurfsprozesse ab. Der Einsatz der Strukturoptimierung im Designprozess führt zu besseren Produkten, geringeren Kosten und kürzeren Entwicklungszeiten! Haben Sie weitere Fragen? Kontaktieren Sie einfach unsere Experten! Wir helfen Ihnen gerne weiter.
Industrie und Verwaltungsbau

Industrie und Verwaltungsbau

Unsere Produkte sind nach den jeweiligen Bauvorhaben gegliedert.
Verdampfer aSTEAM

Verdampfer aSTEAM

Verdampfung definierter Flüssigkeitsströme Die Direktverdampfer der Baureihe aSTEAM werden eingesetzt, um geregelte Flüssigkeitsströme ohne Trägergas aus der Flüssigphase in die Dampfphase zu überführen. Eine Vielzahl flüssiger Medien lässt sich so pulsationsfrei verdampfen. Entscheidende Leistungsmerkmale: - Verdampfung ohne Trägergas - Keine Druckstöße und Pulsationen - Hoher Dynamikbereich von besser als 1:20 - Minimales Totvolumen durch kompakten Aufbau - Dosierung der Dampfmenge durch Regelung der Flüssigkeitszufuhr - Medienberührende Komponenten aus Edelstahl - Einsetzbar für eine Vielzahl flüssiger Medien - Sehr kleine Bauform mit hoher Leistungsdichte
PHARMOL: RRP Rostumwandler

PHARMOL: RRP Rostumwandler

Wässrige, mit Schutzinhibitoren versehene Lösung auf Basis Phosphorsäure. Für Stahlkonstruktionen aller Art, die Rost der unterschiedlichsten Zusammensetzung aufweisen. Restaurierungsarbeiten an empfindlichen Bauteilen, bei denen z. B. Strahlen nicht möglich ist. Renovierungsarbeiten in sensiblen Bereichen, in denen thermische oder funkenbildende Vorbehandlungsmethoden aus Sicherheitsgründen nicht angewendet werden können. Geeignet für leicht bis stark angerostete Teile.
Regelungstechnik

Regelungstechnik

Service von Anfang an Know How Nass- oder Trockensystem Regelungstechnik Effizientes Heizen Strahlungswärme Selbstregeleffekt Fußbodenaufbau Heizanlagen optimal einstellen Systemvergleich Decke Heizrohre suchen Staatliche Förderung Informationsanforderung Messeservice
Grund- und Grenzwerte von Platin-Temperatur-Sensoren

Grund- und Grenzwerte von Platin-Temperatur-Sensoren

Platin-Temperatur-Sensoren arbeiten auf der Grundlage der temperaturabhängigen Änderung des Platin-Metall-Widerstandes. Die Beziehung lässt sich durch das folgende charakteristische Polynom beschreiben: Für einen Temperaturbereich zwischen –200 °C und 0 °C: [1 + at + bt + C (t-100 °C) t Für einen Temperaturbereich zwischen 0 °C und 850 °C: (1 + at + bt b ist so klein, dass für die meisten Anwendungen von einer linearen Abhängigkeit zwischen R und der Temperatur ausgegangen werden kann. Die polynomischen Konstanten sind in den internationalen Normen für Platin-Temperatur-Sensoren (IEC 60751 / DIN EN 60751) festgelegt, dabei gilt folgendes: a = 3.9083 x 10 b = -5.775 x 10 c = -4.183 x 10 Der Temperaturkoeffizient (TK oder α) von Platin-Temperatur-Sensoren ist positiv und definiert als: Wobei R der Widerstand bei 100 °C und R der Widerstand bei 0 °C ist. Es handelt sich um die Steigung der linearen Näherung des charakteristischen Polynoms zwischen 0 °C und 100 °C. Die Norm DIN EN 60751 für Platintemperatursensoren spezifiziert einen TK von 0,00385055°C. Außer diesem genormten Temperaturkoeffizienten stehen weitere kundenspezifische Sensoren mit Temperaturkoeffizienten von 0,003750/°C sowie anderen Zwischenwerten auf Wunsch zur Verfügung. Je nach den zur Herstellung der Platin-Temperatur-Sensoren verwendeten Werkstoffen und Verfahren können geringfügige spezifische Abweichungen von den Idealkonstanten und der optimalen Kennlinie auftreten. Diese Abweichungen legen den Arbeits-Temperaturbereich und die Genauigkeitsklassen für jeden Platin-Temperatur-Sensor-Typ fest. Innerhalb dieser Grenzen sind Platin-Temperatur-Sensoren völlig austauschbar. FAQ´s
Kerzen richtig aufstellen

Kerzen richtig aufstellen

Kerzenleuchter Kerzen müssen fest aufgestellt werden so dass sie während des Brennens nicht umkippen können. Der Kerzenhalter sollte hitzefest und nicht entflammbar sein. Abstände: Kerzen vertragen es nicht, wenn sie zu dicht neben- oder untereinander brennen. Es ist stets auf genügend Abstand zu achten. Zugluft vermeiden: Kerzen vertragen keine Zugluft. Bei Zugluft wird die vollständige Verbrennung gestört, die Kerze beginnt zu rußen und zu tropfen und brennt einseitig ab. Sicherheit: Eine Kerzenflamme ist ein lebendiges Licht, das niemals unbeaufsichtigt brennen sollte. Einseitiges abbrennen: Einen brennenden Docht kann man vorsichtig zur Seite biegen, wenn die Kerze einseitig abbrennt. Einen erstarrten Docht hingegen sollte man nie biegen oder gar abbrechen. Rußabgabe: Eine brennende Kerze darf nur minimal Ruß abgeben. Falls Rußabgabe deutlich erkennbar wird, muss man eingreifen: entweder durch Abstellen der Zugluft oder durch Kürzen des Dochtes. Notfalls muss die Flamme ausgelöscht werden.
Druckluftzerstäubung / Druckluftbefeuchtung führten wir z.B. aus bei

Druckluftzerstäubung / Druckluftbefeuchtung führten wir z.B. aus bei

Firma Kowa in Goldenstett, Haustürenhersteller Firma Steinmann in Vlotho, Holzfensterwerk Firma Weßler in Dierdorf, Haustürenhersteller Firma Pfeffer in Starzach, Fensterwerk Firma Höhbauer, Ruhe Wildeau, Fenster- und Türenhersteller Firma Rubner, Werk Percha, Südtirol, Türenwerk
Analyse von Bauteilen mittels FEM-Berechnung

Analyse von Bauteilen mittels FEM-Berechnung

Analyse nahezu aller Strukturen technischer Bauteile mit Hilfe der Finite-Elemente-Methode (FEM). Die Optimierung basiert auf einer Strukturanalyse oder Strukturberechnung gemäß den kundenspezifischen Vorgaben. In unserem Softwarepaket XCARAT sind fortschrittliche Berechnungswerkzeuge verfügbar, die Simulationen realitätsnah, präzise und schnell durchführen können. Zur Untersuchung der mechanischen Eigenschaften von Bauteilen, die einer Optimierung bedürfen, wird die FE-Simulation eingesetzt. Dabei kommt die Finite-Elemente-Methode zum Einsatz. Wir können unseren Kunden ein breites Spektrum an Analyseverfahren zur Verfügung stellen: - Geometrisch lineare und geometrisch nichtlineare Statik und Dynamik - Eigenfrequenzberechnung, harmonische Analyse - Lineare und nichtlineare Beulanalyse Für die Diskretisierung steht uns ein breites Spektrum an Elementformulierungen und Modellierungstechniken zur Verfügung. Die Berechnungen werden mit unserem eigenen Optimierungssolver durchgeführt, welcher ein breites Spektrum an effizienten Optimierungsverfahren beinhaltet. Haben Sie weitere Fragen? Kontaktieren Sie einfach unsere Experten! Wir helfen Ihnen gerne weiter.